Title
Uterine electrophysiological monitoring outside pregnancy

Main supervisor
Dr. ir. Chiara Rabotti, (C.Rabotti@tue.nl)

Other involved staff members
Dr. ir. Lin Xu and dr. ir. Massimo Mischi

Location
Eindhoven University of Technology (BM/d Labs) and Catharina Hospital Eindhoven

Background
In developed countries, infertility represents a serious psychological and economic burden. Uterine contractions play a determinant role in infertility: a relatively quiescent (not contracting) uterus seems in fact a prerequisite for successful conception and a healthy pregnancy afterwards. The properties of uterine contractions could be controlled by dedicated drugs. However, currently there is no method for an objective and continuous characterization of uterine contractions outside pregnancy. The electrohysterogram (EHG) is the measurement of the electrical activity originating uterine contractions and has been studied during pregnancy. Potentially, analysis of the EHG can provide a reliable and objective tool also for non-pregnant women. Preliminary studies are promising, but EHG analysis and interpretation is highly challenging due to the low amplitude of the signal and the innovative use of this technique outside pregnancy.

Description
This master thesis project focuses on developing new methods for the analysis of the EHG and aims at characterizing and classifying uterine activity in non-pregnant women. The scope of the project will be defined based on the interest of the student and can include following aspects: extracting and understanding physiologically meaningful features from the EHG, developing methods for detecting the contractile periods, and improving the robustness to noise. The techniques used can vary from more traditional signal processing and modelling approaches to machine learning.

Keywords
Healthcare/Perinatology, Electrohysterography (EHG), Signal analysis, Parameter estimation, Algorithm development and simulation, Jointly with clinical partners.

Elective courses
5LSCO Biomedical sensing technology
5LSLO Machine learning for signal processing
5SSCO Adaptive array signal processing